Memorial University Women in Science and Engineering Graduate Student Society (Analytical Stream)

March 30 - 31, 2019

8:30 am - 4:30 pm

Instructors: Danielle Quinn, Joany Marino

Helpers: Emilie Novaczek, Diana Sankar

General Information

Data Carpentry develops and teaches workshops on the fundamental data skills needed to conduct research. Its target audience is researchers who have little to no prior computational experience, and its lessons are domain specific, building on learners' existing knowledge to enable them to quickly apply skills learned to their own research. Participants will be encouraged to help one another and to apply what they have learned to their own research problems.

For more information on what we teach and why, please see our paper "Good Enough Practices for Scientific Computing".

Who: Women and gender minorities in any field of research or industry who would benefit from learning how to code, including graduate students, researchers, faculty, and industry professionals from Memorial University or the greater St. John's community. These workshops will cover introductory material designed for those brand new to programming but may also be suitable for those looking to expand upon existing coding skills by learning a new programming language. You don't need to have any previous knowledge of the tools that will be presented at the workshop.

Where: EN2116, Engineering Building, Memorial University, 40 Arctic Avenue, St. John's, Newfoundland. Get directions with OpenStreetMap or Google Maps.

When: March 30 - 31, 2019. Add to your Google Calendar.

Requirements: Participants must bring a laptop with a Mac, Linux, or Windows operating system (not a tablet, Chromebook, etc.) that they have administrative privileges on. They should have a few specific software packages installed (listed below). They are also required to abide by Data Carpentry's Code of Conduct.

Accessibility: We are committed to making this workshop accessible to everybody. The workshop organizers have checked that:

Materials will be provided in advance of the workshop and large-print handouts are available if needed by notifying the organizers in advance. If we can help making learning easier for you (e.g. sign-language interpreters, lactation facilities) please get in touch (using contact details below) and we will attempt to provide them.

Contact: Please email danielle.quinn@mun.ca or occ356@mun.ca for more information.


Surveys

Please be sure to complete these surveys before and after the workshop.

Pre-workshop Survey

Post-workshop Survey


Schedule

Day 1

08:30 Welcome and software installation troubleshooting
09:00 Data organization in spreadsheets
10:30 Morning break
12:00 Lunch break
13:00 Data cleaning with OpenRefine
14:30 Afternoon break
16:30 END

Day 2

08:30 Welcome and software installation troubleshooting
09:00 Introduction to R
10:30 Morning break
12:00 Lunch break
13:00 Reproducible research with R
14:30 Afternoon break
16:30 Workshop feedback and closing
17:00 END

Syllabus


Setup

To participate in a Data Carpentry workshop, you will need access to the software described below. In addition, you will need an up-to-date web browser.

We maintain a list of common issues that occur during installation as a reference for instructors that may be useful on the Configuration Problems and Solutions wiki page.

OpenRefine

For this lesson you will need OpenRefine and a web browser. Note: this is a Java program that runs on your machine (not in the cloud). It runs inside a web browser, but no web connection is needed.

Windows

Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser. It will not run correctly in Internet Explorer.

Download software from http://openrefine.org/

Create a new directory called OpenRefine.

Unzip the downloaded file into the OpenRefine directory by right-clicking and selecting "Extract ...".

Go to your newly created OpenRefine directory.

Launch OpenRefine by clicking openrefine.exe (this will launch a command prompt window, but you can ignore that - just wait for OpenRefine to open in the browser).

If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.

Mac

Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser. It may not run correctly in Safari.

Download software from http://openrefine.org/.

Create a new directory called OpenRefine.

Unzip the downloaded file into the OpenRefine directory by double-clicking it.

Go to your newly created OpenRefine directory.

Launch OpenRefine by dragging the icon into the Applications folder.

Use Ctrl-click/Open ... to launch it.

If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.

Linux

Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser.

Download software from http://openrefine.org/.

Make a directory called OpenRefine.

Unzip the downloaded file into the OpenRefine directory.

Go to your newly created OpenRefine directory.

Launch OpenRefine by entering ./refine into the terminal within the OpenRefine directory.

If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.

R

R is a programming language that is especially powerful for data exploration, visualization, and statistical analysis. To interact with R, we use RStudio.

Windows

Video Tutorial

Install R by downloading and running this .exe file from CRAN. Also, please install the RStudio IDE. Note that if you have separate user and admin accounts, you should run the installers as administrator (right-click on .exe file and select "Run as administrator" instead of double-clicking). Otherwise problems may occur later, for example when installing R packages.

macOS

Video Tutorial

Install R by downloading and running this .pkg file from CRAN. Also, please install the RStudio IDE.

Linux

You can download the binary files for your distribution from CRAN. Or you can use your package manager (e.g. for Debian/Ubuntu run sudo apt-get install r-base and for Fedora run sudo dnf install R). Also, please install the RStudio IDE.